Innerness of ρ-derivations on Hyperfinite Von Neumann Algebras
نویسندگان
چکیده
Suppose that M,N are von Neumann algebras acting on a Hilbert space and M is hyperfinite. Let ρ : M → N be an ultraweakly continuous ∗-homomorphism and let δ : M → N be a ∗-ρ-derivation such that δ(I) commutes with ρ(I). We prove that there is an element U in N with ‖U‖ ≤ ‖δ‖ such that δ(A) = Uρ(A)− ρ(A)U for all A ∈ M. c © Electronic Journal of Theoretical Physics. All rights reserved.
منابع مشابه
Linear maps on von-Neumann algebras behaving like anti-derivations at orthogonal elements
This article has no abstract.
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملLeft Jordan derivations on Banach algebras
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
متن کاملApproximate Innerness and Central Triviality of Endomorphisms
We introduce the notions of approximate innerness and central triviality for endomorphisms on separable von Neumann factors, and we characterize them for hyperfinite factors by Connes-Takesaki modules of endomorphisms and modular endomorphisms which are introduced by Izumi. Our result is a generalization of the corresponding result obtained by KawahigashiSutherland-Takesaki in automorphism case.
متن کاملCentral Extension of Mappings on von Neumann Algebras
Let M be a von Neumann algebra and ρ : M → M be a ∗-homomorphism. Then ρ is called a centrally extendable ∗-homomorphism (CEH) if there is a maximal abelian subalgebra (masa) M of the commutant M of M and a surjective ∗-homomorphism φ : M → M such that φ(Z) = ρ(Z) for all Z in the center of M. A ∗-ρderivation δ : M → M is called a centrally extendable ∗-ρ-derivation (CED) if there is a masa M o...
متن کامل